Migrating from PyTables 1.x to 2.x
- Author:
Francesc Alted i Abad
- Contact:
- Author:
Ivan Vilata i Balaguer
- Contact:
Next are described a series of issues that you must have in mind when migrating from PyTables 1.x to PyTables 2.x series.
New type system
In PyTables 2.x all the data types for leaves are described through a couple of classes:
Atom
: Describes homogeneous types of the atomic components in*Array
objects (
Array
,CArray
,EArray
andVLArray
).
Description
: Describes (possibly nested) heterogeneous types inTable
objects.
So, in order to upgrade to the new type system, you must perform the next replacements:
*Array.stype
–>*Array.atom.type
(PyTables type)*Array.type
–>*Array.atom.dtype
(NumPy type)*Array.itemsize
–>*Array.atom.itemsize
(the size of the item)
Furthermore, the PyTables types (previously called “string types”) have changed to better adapt to NumPy conventions. The next changes have been applied:
PyTables types are now written in lower case, so ‘Type’ becomes ‘type’. For example, ‘Int64’ becomes now ‘int64’.
‘CharType’ –> ‘string’
‘Complex32’, ‘Complex64’ –> ‘complex64’, ‘complex128’. Note that the numeric part of a ‘complex’ type refers now to the size in bits of the type and not to the precision, as before.
See Appendix I of the Users’ Manual on supported data types for more information on the new PyTables types.
Important changes in Atom
specification
The
dtype
argument ofEnumAtom
andEnumCol
constructors has been replaced by thebase
argument, which can take a full-blown atom, although it accepts bare PyTables types as well. This is a mandatory argument now.vlstring
pseudo-atoms used inVLArray
nodes do no longer imply UTF-8 (nor any other) encoding, they only store and load raw strings of bytes. All encoding and decoding is left to the user. Be warned that reading old files may yield raw UTF-8 encoded strings, which may be converted back to Unicode in this way:unistr = vlarray[index].decode('utf-8')
If you need to work with variable-length Unicode strings, you may want to use the new
vlunicode
pseudo-atom, which fully supports Unicode strings with no encoding hassles.Finally,
Atom
andCol
are now abstract classes, so you can’t use them to create atoms or column definitions of an arbitrary type. If you know the particular type you need, use the proper subclass; otherwise, use theAtom.from_*()
orCol.from_*()
factory methods. See the section on declarative classes in the reference.You are also advised to avoid using the inheritance of atoms to check for their kind or type; for that purpose, use their
kind
andtype
attributes.
New query system
In-kernel conditions, since they are based now in Numexpr, must be written as strings. For example, a condition that in 1.x was stated as:
result = [row['col2'] for row in table.where(table.cols.col1 == 1)]
now should read:
result = [row['col2'] for row in table.where('col1 == 1')]
That means that complex selections are possible now:
result = [ row['col2'] for row in table.where('(col1 == 1) & (col3**4 > 1)') ]
For the same reason, conditions for indexed columns must be written as strings as well.
New indexing system
The indexing system has been totally rewritten from scratch for PyTables 2.0 Pro Edition. The new indexing system has been included into PyTables with release 2.3. Due to this, your existing indexes created with PyTables 1.x will be useless, and although you will be able to continue using the actual data in files, you won’t be able to take advantage of any improvement in speed.
You will be offered the possibility to automatically re-create the indexes
in PyTables 1.x format to the new 2.0 format by using the ptrepack
utility.
New meanings for atom shape and *Array
shape argument
With PyTables 1.x, the atom shape was used for different goals depending on
the context it was used. For example, in createEArray()
, the shape of the
atom was used to specify the dataset shape of the object on disk, while in
CArray
the same atom shape was used to specify the chunk shape of the
dataset on disk. Moreover, for VLArray
objects, the very same atom shape
specified the type shape of the data type. As you see, all of these was
quite a mess.
Starting with PyTables 2.x, an Atom
only specifies properties of the data
type (à la VLArray
in 1.x). This lets the door open for specifying
multidimensional data types (that can be part of another layer of
multidimensional datasets) in a consistent way along all the *Array
objects in PyTables.
As a consequence of this, File.createCArray()
and File.createVLArray()
methods have received new parameters in order to make possible to specify the
shapes of the datasets as well as chunk sizes (in fact, it is possible now to
specify the latter for all the chunked leaves, see below). Please have this
in mind during the migration process.
Another consequence is that, now that the meaning of the atom shape is clearly defined, it has been chosen as the main object to describe homogeneous data types in PyTables. See the Users’ Manual for more info on this.
New argument chunkshape
of chunked leaves
It is possible now to specify the chunk shape for all the chunked leaves in
PyTables (all except Array
). With PyTables 1.x this value was
automatically calculated so as to achieve decent results in most of the
situations. However, the user may be interested in specifying its own chunk
shape based on her own needs (although this should be done only by advanced
users).
Of course, if this parameter is not specified, a sensible default is calculated for the size of the leave (which is recommended).
A new attribute called chunkshape
has been added to all leaves. It is
read-only (you can’t change the size of chunks once you have created a leaf),
but it can be useful for inspection by advanced users.
New flavor specification
As of 2.x, flavors can only be set through the flavor
attribute of
leaves, and they are persistent, so changing a flavor requires that the file
be writable.
Flavors can no longer be set through File.create*()
methods, nor the
flavor
argument previously found in some Table
methods, nor through
Atom
constructors or the _v_flavor
attribute of descriptions.
System attributes can be deleted now
The protection against removing system attributes (like FILTERS
,
FLAVOR
or CLASS
, to name only a few) has been completely removed. It
is now the responsibility of the user to make a proper use of this freedom.
With this, users can get rid of all proprietary PyTables attributes if they
want to (for example, for making a file to look more like an HDF5 native one).
Byteorder issues
Now, all the data coming from reads and internal buffers is always converted on-the-fly, if needed, to the native byteorder. This represents a big advantage in terms of speed when operating with objects coming from files that have been created in machines with a byte ordering different from native.
Besides, all leaf constructors have received a new byteorder
parameter
that allows specifying the byteorder of data on disk. In particular, a
_v_byteorder
entry in a Table description is no longer honored and you
should use the aforementioned byteorder
parameter.
Tunable internal buffer sizes
You can change the size of the internal buffers for I/O purposes of PyTables
by changing the value of the new public attribute nrowsinbuf
that is
present in all leaves. By default, this contains a sensible value so as to
achieve a good balance between speed and memory consumption. Be careful when
changing it, if you don’t want to get unwanted results (very slow I/O, huge
memory consumption…).
Changes to module names
If your application is directly accessing modules under the tables
package, you need to know that the names of all modules are now all in
lowercase. This allows one to tell apart the tables.Array
class from
the tables.array
module (which was also called tables.Array
before).
This includes subpackages like tables.nodes.FileNode
.
On top of that, more-or-less independent modules have also been renamed and some of them grouped into subpackages. The most important are:
The
tables.netcdf3
subpackage replaces the oldtables.NetCDF
module.The
tables.nra
subpackage replaces the oldnestedrecords.py
with the implementation of theNestedRecArray
class.
Also, the tables.misc
package includes utility modules which do not depend
on PyTables.
Other changes
Filters.complib
isNone
for filter properties created withcomplevel=0
(i.e. disabled compression, which is the default).‘non-relevant’ –> ‘irrelevant’ (applied to byteorders)
Table.colstypes
–>Table.coltypes
Table.coltypes
–>Table.coldtypes
Added
Table.coldescr
, dictionary of theCol
descriptions.Table.colshapes
has disappeared. You can get it this way:colshapes = dict( (name, col.shape) for (name, col) in table.coldescr.iteritems() )
Table.colitemsizes
has disappeared. You can get it this way:colitemsizes = dict( (name, col.itemsize) for (name, col) in table.coldescr.iteritems() )
Description._v_totalsize
–>Description._v_itemsize
Description._v_itemsizes
andDescription._v_totalsizes
have disappeared.Leaf._v_chunksize
–>Leaf.chunkshape
Enjoy data!
—The PyTables Team