"""Here is defined the Index class."""
import math
import operator
import os
import sys
import tempfile
import warnings
from pathlib import Path
from time import perf_counter as clock
from time import process_time as cpuclock
from typing import Literal, Optional, Union, TYPE_CHECKING
import numpy as np
import numpy.typing as npt
from .idxutils import (calc_chunksize, calcoptlevels,
get_reduction_level, nextafter, inftype)
from . import indexesextension
from .node import NotLoggedMixin
from .atom import UIntAtom, Atom
from .earray import EArray
from .carray import CArray
from .leaf import Filters
from .indexes import CacheArray, LastRowArray, IndexArray
from .group import Group
from .path import join_path
from .exceptions import PerformanceWarning
from .utils import is_idx, idx2long, lazyattr
from .utilsextension import (nan_aware_gt, nan_aware_ge,
nan_aware_lt, nan_aware_le,
bisect_left, bisect_right)
from .lrucacheextension import ObjectCache
# default version for INDEX objects
# obversion = "1.0" # Version of indexes in PyTables 1.x series
# obversion = "2.0" # Version of indexes in PyTables Pro 2.0 series
obversion = "2.1" # Version of indexes in PyTables Pro 2.1 and up series,
# # including the join 2.3 Std + Pro version
debug = False
# debug = True # Uncomment this for printing sizes purposes
profile = False
# profile = True # Uncomment for profiling
if profile:
from .utils import show_stats
if TYPE_CHECKING:
from .array import Array
from .group import RootGroup
from .table import Cols, Table
# The default method for sorting
# defsort = "quicksort"
# Changing to mergesort to fix #441
defsort = "mergesort"
# Default policy for automatically updating indexes after a table
# append operation, or automatically reindexing after an
# index-invalidating operation like removing or modifying table rows.
default_auto_index = True
# Keep in sync with ``Table.autoindex`` docstring.
# Default filters used to compress indexes. This is quite fast and
# compression is pretty good.
# Remember to keep these defaults in sync with the docstrings and UG.
default_index_filters = Filters(complevel=1, complib='zlib',
shuffle=True, fletcher32=False)
# Deprecated API
defaultAutoIndex = default_auto_index
defaultIndexFilters = default_index_filters
# The list of types for which an optimised search in cython and C has
# been implemented. Always add here the name of a new optimised type.
opt_search_types = ("int8", "int16", "int32", "int64",
"uint8", "uint16", "uint32", "uint64",
"float32", "float64")
# The upper limit for uint32 ints
max32 = 2**32
def _table_column_pathname_of_index(indexpathname: str) -> tuple[str, str]:
names = indexpathname.split("/")
for i, name in enumerate(names):
if name.startswith('_i_'):
break
tablepathname = "/".join(names[:i]) + "/" + name[3:]
colpathname = "/".join(names[i + 1:])
return (tablepathname, colpathname)
[docs]
class Index(NotLoggedMixin, Group, indexesextension.Index):
"""Represents the index of a column in a table.
This class is used to keep the indexing information for columns in a Table
dataset (see :ref:`TableClassDescr`). It is actually a descendant of the
Group class (see :ref:`GroupClassDescr`), with some added functionality. An
Index is always associated with one and only one column in the table.
.. note::
This class is mainly intended for internal use, but some of its
documented attributes and methods may be interesting for the
programmer.
Parameters
----------
parentnode
The parent :class:`Group` object.
.. versionchanged:: 3.0
Renamed from *parentNode* to *parentnode*.
name : str
The name of this node in its parent group.
atom : Atom
An Atom object representing the shape and type of the atomic objects to
be saved. Only scalar atoms are supported.
title
Sets a TITLE attribute of the Index entity.
kind
The desired kind for this index. The 'full' kind specifies a complete
track of the row position (64-bit), while the 'medium', 'light' or
'ultralight' kinds only specify in which chunk the row is (using
32-bit, 16-bit and 8-bit respectively).
optlevel
The desired optimization level for this index.
filters : Filters
An instance of the Filters class that provides information about the
desired I/O filters to be applied during the life of this object.
tmp_dir
The directory for the temporary files.
expectedrows
Represents an user estimate about the number of row slices that will be
added to the growable dimension in the IndexArray object.
byteorder
The byteorder of the index datasets *on-disk*.
blocksizes
The four main sizes of the compound blocks in index datasets (a low
level parameter).
new
Whether this Index is new or has to be read from disk.
"""
_c_classid = 'INDEX'
@property
def kind(self) -> Literal["ultralight", "light", "medium", "full"]:
"""The kind of this index."""
return {1: 'ultralight', 2: 'light',
4: 'medium', 8: 'full'}[self.indsize]
@property
def filters(self) -> Filters:
"""Filter properties for this index - see Filters in
:ref:`FiltersClassDescr`."""
return self._v_filters
@property
def dirty(self) -> bool:
"""Whether the index is dirty or not.
Dirty indexes are out of sync with column data, so they exist but they
are not usable.
"""
# If there is no ``DIRTY`` attribute, index should be clean.
return getattr(self._v_attrs, 'DIRTY', False)
@dirty.setter
def dirty(self, dirty: bool) -> None:
wasdirty, isdirty = self.dirty, bool(dirty)
self._v_attrs.DIRTY = dirty
# If an *actual* change in dirtiness happens,
# notify the condition cache by setting or removing a nail.
conditioncache = self.table._condition_cache
if not wasdirty and isdirty:
conditioncache.nail()
if wasdirty and not isdirty:
conditioncache.unnail()
@property
def column(self) -> "Cols":
"""The Column (see :ref:`ColumnClassDescr`) instance for the indexed
column."""
tablepath, columnpath = _table_column_pathname_of_index(
self._v_pathname)
table = self._v_file._get_node(tablepath)
column = table.cols._g_col(columnpath)
return column
@property
def table(self) -> "Table":
"""Accessor for the `Table` object of this index."""
tablepath, columnpath = _table_column_pathname_of_index(
self._v_pathname)
table = self._v_file._get_node(tablepath)
return table
@property
def nblockssuperblock(self) -> int:
"""The number of blocks in a superblock."""
return self.superblocksize // self.blocksize
@property
def nslicesblock(self) -> int:
"""The number of slices in a block."""
return self.blocksize // self.slicesize
@property
def nchunkslice(self) -> int:
"""The number of chunks in a slice."""
return self.slicesize // self.chunksize
@property
def nsuperblocks(self) -> int:
"""The total number of superblocks in index."""
# Last row should not be considered as a superblock
nelements = self.nelements - self.nelementsILR
nblocks = nelements // self.superblocksize
if nelements % self.blocksize > 0:
nblocks += 1
return nblocks
@property
def nblocks(self) -> int:
"""The total number of blocks in index."""
# Last row should not be considered as a block
nelements = self.nelements - self.nelementsILR
nblocks = nelements // self.blocksize
if nelements % self.blocksize > 0:
nblocks += 1
return nblocks
@property
def nslices(self) -> int:
"""The number of complete slices in index."""
return self.nelements // self.slicesize
@property
def nchunks(self) -> int:
"""The number of complete chunks in index."""
return self.nelements // self.chunksize
@property
def shape(self) -> tuple[int, int]:
"""The shape of this index (in slices and elements)."""
return (self.nrows, self.slicesize)
@property
def temp_required(self) -> bool:
"""Whether a temporary file for indexes is required or not."""
return (self.indsize > 1 and
self.optlevel > 0 and
self.table.nrows > self.slicesize)
@property
def want_complete_sort(self) -> bool:
"""Whether we should try to build a completely sorted index or not."""
return self.indsize == 8 and self.optlevel == 9
@property
def is_csi(self) -> bool:
"""Whether the index is completely sorted or not.
.. versionchanged:: 3.0
The *is_CSI* property has been renamed into *is_csi*.
"""
if self.nelements == 0:
# An index with 0 indexed elements is not a CSI one (by definition)
return False
if self.indsize < 8:
# An index that is not full cannot be completely sorted
return False
# Try with the 'is_csi' attribute
if 'is_csi' in self._v_attrs:
return self._v_attrs.is_csi
# If not, then compute the overlaps manually
# (the attribute 'is_csi' will be set there)
self.compute_overlaps(self, None, False)
return self.noverlaps == 0
@lazyattr
def nrowsinchunk(self) -> int:
"""The number of rows that fits in a *table* chunk."""
return self.table.chunkshape[0]
@lazyattr
def lbucket(self) -> int:
"""Return the length of a bucket based index type."""
# Avoid to set a too large lbucket size (mainly useful for tests)
lbucket = min(self.nrowsinchunk, self.chunksize)
if self.indsize == 1:
# For ultra-light, we will never have to keep track of a
# bucket outside of a slice.
maxnb = 2**8
if self.slicesize > maxnb * lbucket:
lbucket = math.ceil(self.slicesize / maxnb)
elif self.indsize == 2:
# For light, we will never have to keep track of a
# bucket outside of a block.
maxnb = 2**16
if self.blocksize > maxnb * lbucket:
lbucket = math.ceil(self.blocksize / maxnb)
else:
# For medium and full indexes there should not be a need to
# increase lbucket
pass
return lbucket
def __init__(self,
parentnode: Group,
name: str,
atom: Optional[Atom]=None,
title: str="",
kind: Optional[Literal["ultralight", "light", "medium", "full"]]=None,
optlevel: Optional[int]=None,
filters: Optional[Filters]=None,
tmp_dir: Optional[str]=None,
expectedrows: int=0,
byteorder: Optional[str]=None,
blocksizes: Optional[tuple[int, int, int, int]]=None,
new: bool=True) -> None:
self._v_version: Optional[str] = None
"""The object version of this index."""
self.optlevel = optlevel
"""The optimization level for this index."""
self.tmp_dir = tmp_dir
"""The directory for the temporary files."""
self.expectedrows = int(expectedrows)
"""The expected number of items of index arrays."""
if byteorder in ["little", "big"]:
self.byteorder = byteorder
else:
self.byteorder = sys.byteorder
"""The byteorder of the index datasets."""
if atom is not None:
self.dtype = atom.dtype.base
self.type = atom.type
"""The datatypes to be stored by the sorted index array."""
# ############## Important note ###########################
# The datatypes saved as index values are NumPy native
# types, so we get rid of type metainfo like Time* or Enum*
# that belongs to HDF5 types (actually, this metainfo is
# not needed for sorting and looking-up purposes).
# #########################################################
indsize = {
'ultralight': 1, 'light': 2, 'medium': 4, 'full': 8}[kind]
assert indsize in (1, 2, 4, 8), "indsize should be 1, 2, 4 or 8!"
self.indsize = indsize
"""The itemsize for the indices part of the index."""
self.nrows: Optional[int] = None
"""The total number of slices in the index."""
self.nelements: Optional[int] = None
"""The number of currently indexed rows for this column."""
self.blocksizes = blocksizes
"""The four main sizes of the compound blocks (if specified)."""
self.dirtycache = True
"""Dirty cache (for ranges, bounds & sorted) flag."""
self.superblocksize: Optional[int] = None
"""Size of the superblock for this index."""
self.blocksize: Optional[int] = None
"""Size of the block for this index."""
self.slicesize: Optional[int] = None
"""Size of the slice for this index."""
self.chunksize: Optional[int] = None
"""Size of the chunk for this index."""
self.tmpfilename: Optional[str] = None
"""Filename for temporary bounds."""
self.opt_search_types = opt_search_types
"""The types for which and optimized search has been implemented."""
self.noverlaps = -1
"""The number of overlaps in an index. 0 means a completely
sorted index. -1 means that this number is not computed yet."""
self.tprof = 0
"""Time counter for benchmarking purposes."""
from .file import open_file
self._openFile = open_file
"""The `open_file()` function, to avoid a circular import."""
super().__init__(parentnode, name, title, new, filters)
def _g_post_init_hook(self) -> None:
if self._v_new:
# The version for newly created indexes
self._v_version = obversion
super()._g_post_init_hook()
# Index arrays must only be created for new indexes
if not self._v_new:
idxversion = self._v_version
# Set-up some variables from info on disk and return
attrs = self._v_attrs
# Coerce NumPy scalars to Python scalars in order
# to avoid undesired upcasting operations.
self.superblocksize = int(attrs.superblocksize)
self.blocksize = int(attrs.blocksize)
self.slicesize = int(attrs.slicesize)
self.chunksize = int(attrs.chunksize)
self.blocksizes = (self.superblocksize, self.blocksize,
self.slicesize, self.chunksize)
self.optlevel = int(attrs.optlevel)
sorted = self.sorted
indices = self.indices
self.dtype = sorted.atom.dtype
self.type = sorted.atom.type
self.indsize = indices.atom.itemsize
# Some sanity checks for slicesize, chunksize and indsize
assert self.slicesize == indices.shape[1], "Wrong slicesize"
assert self.chunksize == indices._v_chunkshape[
1], "Wrong chunksize"
assert self.indsize in (1, 2, 4, 8), "Wrong indices itemsize"
if idxversion > "2.0":
self.reduction = int(attrs.reduction)
nelementsSLR = int(self.sortedLR.attrs.nelements)
nelementsILR = int(self.indicesLR.attrs.nelements)
else:
self.reduction = 1
nelementsILR = self.indicesLR[-1]
nelementsSLR = nelementsILR
self.nrows = sorted.nrows
self.nelements = self.nrows * self.slicesize + nelementsILR
self.nelementsSLR = nelementsSLR
self.nelementsILR = nelementsILR
if nelementsILR > 0:
self.nrows += 1
# Get the bounds as a cache (this has to remain here!)
rchunksize = self.chunksize // self.reduction
nboundsLR = (nelementsSLR - 1) // rchunksize
if nboundsLR < 0:
nboundsLR = 0 # correction for -1 bounds
nboundsLR += 2 # bounds + begin + end
# All bounds values (+begin + end) are at the end of sortedLR
self.bebounds = self.sortedLR[
nelementsSLR:nelementsSLR + nboundsLR]
return
# The index is new. Initialize the values
self.nrows = 0
self.nelements = 0
self.nelementsSLR = 0
self.nelementsILR = 0
# The atom
atom = Atom.from_dtype(self.dtype)
# The filters
filters = self.filters
# Compute the superblocksize, blocksize, slicesize and chunksize values
# (in case these parameters haven't been passed to the constructor)
if self.blocksizes is None:
self.blocksizes = calc_chunksize(
self.expectedrows, self.optlevel, self.indsize, node=self)
(self.superblocksize, self.blocksize,
self.slicesize, self.chunksize) = self.blocksizes
if debug:
print("blocksizes:", self.blocksizes)
# Compute the reduction level
self.reduction = get_reduction_level(
self.indsize, self.optlevel, self.slicesize, self.chunksize)
rchunksize = self.chunksize // self.reduction
rslicesize = self.slicesize // self.reduction
# Save them on disk as attributes
self._v_attrs.superblocksize = np.uint64(self.superblocksize)
self._v_attrs.blocksize = np.uint64(self.blocksize)
self._v_attrs.slicesize = np.uint32(self.slicesize)
self._v_attrs.chunksize = np.uint32(self.chunksize)
# Save the optlevel as well
self._v_attrs.optlevel = self.optlevel
# Save the reduction level
self._v_attrs.reduction = self.reduction
# Create the IndexArray for sorted values
sorted = IndexArray(self, 'sorted', atom, "Sorted Values",
filters, self.byteorder)
# Create the IndexArray for index values
IndexArray(self, 'indices', UIntAtom(itemsize=self.indsize),
"Number of chunk in table", filters, self.byteorder)
# Create the cache for range values (1st order cache)
CacheArray(self, 'ranges', atom, (0, 2), "Range Values", filters,
self.expectedrows // self.slicesize,
byteorder=self.byteorder)
# median ranges
EArray(self, 'mranges', atom, (0,), "Median ranges", filters,
byteorder=self.byteorder, _log=False)
# Create the cache for boundary values (2nd order cache)
nbounds_inslice = (rslicesize - 1) // rchunksize
CacheArray(self, 'bounds', atom, (0, nbounds_inslice),
"Boundary Values", filters, self.nchunks,
(1, nbounds_inslice), byteorder=self.byteorder)
# begin, end & median bounds (only for numerical types)
EArray(self, 'abounds', atom, (0,), "Start bounds", filters,
byteorder=self.byteorder, _log=False)
EArray(self, 'zbounds', atom, (0,), "End bounds", filters,
byteorder=self.byteorder, _log=False)
EArray(self, 'mbounds', atom, (0,), "Median bounds", filters,
byteorder=self.byteorder, _log=False)
# Create the Array for last (sorted) row values + bounds
shape = (rslicesize + 2 + nbounds_inslice,)
sortedLR = LastRowArray(self, 'sortedLR', atom, shape,
"Last Row sorted values + bounds",
filters, (rchunksize,),
byteorder=self.byteorder)
# Create the Array for the number of chunk in last row
shape = (self.slicesize,) # enough for indexes and length
indicesLR = LastRowArray(self, 'indicesLR',
UIntAtom(itemsize=self.indsize),
shape, "Last Row indices",
filters, (self.chunksize,),
byteorder=self.byteorder)
# The number of elements in LR will be initialized here
sortedLR.attrs.nelements = 0
indicesLR.attrs.nelements = 0
# All bounds values (+begin + end) are uninitialized in creation time
self.bebounds = None
# The starts and lengths initialization
self.starts = np.empty(shape=self.nrows, dtype=np.int32)
"""Where the values fulfiling conditions starts for every slice."""
self.lengths = np.empty(shape=self.nrows, dtype=np.int32)
"""Lengths of the values fulfilling conditions for every slice."""
# Finally, create a temporary file for indexes if needed
if self.temp_required:
self.create_temp()
def initial_append(self,
xarr: list[np.ndarray],
nrow: int,
reduction: int) -> tuple[int, np.ndarray, np.ndarray]:
"""Compute an initial indices arrays for data to be indexed."""
if profile:
tref = clock()
if profile:
show_stats("Entering initial_append", tref)
arr = xarr.pop()
indsize = self.indsize
slicesize = self.slicesize
nelementsILR = self.nelementsILR
if profile:
show_stats("Before creating idx", tref)
if indsize == 8:
# Casting to int "nrow * slicesize" fixes #1185
idx = np.arange(0, len(arr), dtype="uint64") + int(nrow * slicesize)
elif indsize == 4:
# For medium (32-bit) all the rows in tables should be
# directly reachable. But as len(arr) < 2**31, we can
# choose uint32 for representing indices. In this way, we
# consume far less memory during the keysort process. The
# offset will be added in self.final_idx32() later on.
#
# This optimization also prevents the values in LR to
# participate in the ``swap_chunks`` process, and this is
# the main reason to not allow the medium indexes to create
# completely sorted indexes. However, I don't find this to
# be a big limitation, as probably fully indexes are much
# more suitable for producing completely sorted indexes
# because in this case the indices part is usable for
# getting the reverse indices of the index, and I forsee
# this to be a common requirement in many operations (for
# example, in table sorts).
#
# F. Alted 2008-09-15
idx = np.arange(0, len(arr), dtype="uint32")
else:
idx = np.empty(len(arr), "uint%d" % (indsize * 8))
lbucket = self.lbucket
# Fill the idx with the bucket indices
offset = int(lbucket - ((nrow * (slicesize % lbucket)) % lbucket))
idx[0:offset] = 0
for i in range(offset, slicesize, lbucket):
idx[i:i + lbucket] = (i + lbucket - 1) // lbucket
if indsize == 2:
# Add a second offset in this case
# First normalize the number of rows
offset2 = (nrow % self.nslicesblock) * slicesize // lbucket
assert offset2 < 2**(indsize*8)
idx += np.asarray(offset2).astype(idx.dtype)
# Add the last row at the beginning of arr & idx (if needed)
if (indsize == 8 and nelementsILR > 0):
# It is possible that the values in LR are already sorted.
# Fetch them and override existing values in arr and idx.
assert len(arr) > nelementsILR
self.read_slice_lr(self.sortedLR, arr[:nelementsILR])
self.read_slice_lr(self.indicesLR, idx[:nelementsILR])
# In-place sorting
if profile:
show_stats("Before keysort", tref)
indexesextension.keysort(arr, idx)
larr = arr[-1]
if reduction > 1:
# It's important to do a copy() here in order to ensure that
# sorted._append() will receive a contiguous array.
if profile:
show_stats("Before reduction", tref)
reduc = arr[::reduction].copy()
if profile:
show_stats("After reduction", tref)
arr = reduc
if profile:
show_stats("After arr <-- reduc", tref)
# A completely sorted index is no longer possible after an
# append of an index with already one slice.
if nrow > 0:
self._v_attrs.is_csi = False
if profile:
show_stats("Exiting initial_append", tref)
return larr, arr, idx
def final_idx32(self, idx: np.ndarray, offset: int) -> np.ndarray:
"""Perform final operations in 32-bit indices."""
if profile:
tref = clock()
if profile:
show_stats("Entering final_idx32", tref)
# Do an upcast first in order to add the offset.
idx = idx.astype('uint64')
idx += np.asarray(offset).astype(idx.dtype)
# The next partition is valid up to table sizes of
# 2**30 * 2**18 = 2**48 bytes, that is, 256 Tera-elements,
# which should be a safe figure, at least for a while.
idx //= np.asarray(self.lbucket).astype(idx.dtype)
# After the division, we can downsize the indexes to 'uint32'
idx = idx.astype('uint32')
if profile:
show_stats("Exiting final_idx32", tref)
return idx
def append(self, xarr: list[np.ndarray], update: bool=False) -> None:
"""Append the array to the index objects."""
if profile:
tref = clock()
if profile:
show_stats("Entering append", tref)
if not update and self.temp_required:
where = self.tmp
# The reduction will take place *after* the optimization process
reduction = 1
else:
where = self
reduction = self.reduction
sorted = where.sorted
indices = where.indices
ranges = where.ranges
mranges = where.mranges
bounds = where.bounds
mbounds = where.mbounds
abounds = where.abounds
zbounds = where.zbounds
sortedLR = where.sortedLR
indicesLR = where.indicesLR
nrows = sorted.nrows # before sorted.append()
larr, arr, idx = self.initial_append(xarr, nrows, reduction)
# Save the sorted array
sorted.append(arr.reshape(1, arr.size))
cs = self.chunksize // reduction
ncs = self.nchunkslice
# Save ranges & bounds
ranges.append([[arr[0], larr]])
bounds.append([arr[cs::cs]])
abounds.append(arr[0::cs])
zbounds.append(arr[cs - 1::cs])
# Compute the medians
smedian = arr[cs // 2::cs]
mbounds.append(smedian)
mranges.append([smedian[ncs // 2]])
if profile:
show_stats("Before deleting arr & smedian", tref)
del arr, smedian # delete references
if profile:
show_stats("After deleting arr & smedian", tref)
# Now that arr is gone, we can upcast the indices and add the offset
if self.indsize == 4:
idx = self.final_idx32(idx, nrows * self.slicesize)
indices.append(idx.reshape(1, idx.size))
if profile:
show_stats("Before deleting idx", tref)
del idx
# Update counters after a successful append
self.nrows = nrows + 1
self.nelements = self.nrows * self.slicesize
self.nelementsSLR = 0 # reset the counter of the last row index to 0
self.nelementsILR = 0 # reset the counter of the last row index to 0
# The number of elements will be saved as an attribute.
# This is necessary in case the LR arrays can remember its values
# after a possible node preemtion/reload.
sortedLR.attrs.nelements = self.nelementsSLR
indicesLR.attrs.nelements = self.nelementsILR
self.dirtycache = True # the cache is dirty now
if profile:
show_stats("Exiting append", tref)
def append_last_row(self, xarr: list[np.ndarray], update: bool=False) -> None:
"""Append the array to the last row index objects."""
if profile:
tref = clock()
if profile:
show_stats("Entering appendLR", tref)
# compute the elements in the last row sorted & bounds array
nrows = self.nslices
if not update and self.temp_required:
where = self.tmp
# The reduction will take place *after* the optimization process
reduction = 1
else:
where = self
reduction = self.reduction
indicesLR = where.indicesLR
sortedLR = where.sortedLR
larr, arr, idx = self.initial_append(xarr, nrows, reduction)
nelementsSLR = len(arr)
nelementsILR = len(idx)
# Build the cache of bounds
rchunksize = self.chunksize // reduction
self.bebounds = np.concatenate((arr[::rchunksize], [larr]))
# The number of elements will be saved as an attribute
sortedLR.attrs.nelements = nelementsSLR
indicesLR.attrs.nelements = nelementsILR
# Save the number of elements, bounds and sorted values
# at the end of the sorted array
offset2 = len(self.bebounds)
sortedLR[nelementsSLR:nelementsSLR + offset2] = self.bebounds
sortedLR[:nelementsSLR] = arr
del arr
# Now that arr is gone, we can upcast the indices and add the offset
if self.indsize == 4:
idx = self.final_idx32(idx, nrows * self.slicesize)
# Save the reverse index array
indicesLR[:len(idx)] = idx
del idx
# Update counters after a successful append
self.nrows = nrows + 1
self.nelements = nrows * self.slicesize + nelementsILR
self.nelementsILR = nelementsILR
self.nelementsSLR = nelementsSLR
self.dirtycache = True # the cache is dirty now
if profile:
show_stats("Exiting appendLR", tref)
def optimize(self, verbose: bool=False) -> None:
"""Optimize an index so as to allow faster searches.
verbose
If True, messages about the progress of the
optimization process are printed out.
"""
if not self.temp_required:
return
if verbose:
self.verbose = True
else:
self.verbose = debug
# Initialize last_tover and last_nover
self.last_tover = 0
self.last_nover = 0
# Compute the correct optimizations for current optim level
opts = calcoptlevels(self.nblocks, self.optlevel, self.indsize)
optmedian, optstarts, optstops, optfull = opts
if debug:
print("optvalues:", opts)
self.create_temp2()
# Start the optimization process
while True:
if optfull:
for niter in range(optfull):
if self.swap('chunks', 'median'):
break
if self.nblocks > 1:
# Swap slices only in the case that we have
# several blocks
if self.swap('slices', 'median'):
break
if self.swap('chunks', 'median'):
break
if self.swap('chunks', 'start'):
break
if self.swap('chunks', 'stop'):
break
else:
if optmedian:
if self.swap('chunks', 'median'):
break
if optstarts:
if self.swap('chunks', 'start'):
break
if optstops:
if self.swap('chunks', 'stop'):
break
break # If we reach this, exit the loop
# Check if we require a complete sort. Important: this step
# should be carried out *after* the optimization process has
# been completed (this is to guarantee that the complete sort
# does not take too much memory).
if self.want_complete_sort:
if self.noverlaps > 0:
self.do_complete_sort()
# Check that we have effectively achieved the complete sort
if self.noverlaps > 0:
warnings.warn(
"OPSI was not able to achieve a completely sorted index."
" Please report this to the authors.", UserWarning)
# Close and delete the temporal optimization index file
self.cleanup_temp()
return
def do_complete_sort(self) -> None:
"""Bring an already optimized index into a complete sorted state."""
if self.verbose:
t1 = clock()
c1 = cpuclock()
ss = self.slicesize
tmp = self.tmp
ranges = tmp.ranges[:]
nslices = self.nslices
nelementsLR = self.nelementsILR
if nelementsLR > 0:
# Add the ranges corresponding to the last row
rangeslr = np.array([self.bebounds[0], self.bebounds[-1]])
ranges = np.concatenate((ranges, [rangeslr]))
nslices += 1
sorted = tmp.sorted
indices = tmp.indices
sortedLR = tmp.sortedLR
indicesLR = tmp.indicesLR
sremain = np.array([], dtype=self.dtype)
iremain = np.array([], dtype='u%d' % self.indsize)
starts = np.zeros(shape=nslices, dtype=np.int_)
for i in range(nslices):
# Find the overlapping elements for slice i
sover = np.array([], dtype=self.dtype)
iover = np.array([], dtype='u%d' % self.indsize)
prev_end = ranges[i, 1]
for j in range(i + 1, nslices):
stj = starts[j]
if ((j < self.nslices and stj == ss) or
(j == self.nslices and stj == nelementsLR)):
# This slice has been already dealt with
continue
if j < self.nslices:
assert stj < ss, \
"Two slices cannot overlap completely at this stage!"
next_beg = sorted[j, stj]
else:
assert stj < nelementsLR, \
"Two slices cannot overlap completely at this stage!"
next_beg = sortedLR[stj]
next_end = ranges[j, 1]
if prev_end > next_end:
# Complete overlapping case
if j < self.nslices:
sover = np.concatenate((sover, sorted[j, stj:]))
iover = np.concatenate((iover, indices[j, stj:]))
starts[j] = ss
else:
n = nelementsLR
sover = np.concatenate((sover, sortedLR[stj:n]))
iover = np.concatenate((iover, indicesLR[stj:n]))
starts[j] = nelementsLR
elif prev_end > next_beg:
idx = self.search_item_lt(tmp, prev_end, j, ranges[j], stj)
if j < self.nslices:
sover = np.concatenate((sover, sorted[j, stj:idx]))
iover = np.concatenate((iover, indices[j, stj:idx]))
else:
sover = np.concatenate((sover, sortedLR[stj:idx]))
iover = np.concatenate((iover, indicesLR[stj:idx]))
starts[j] = idx
# Build the extended slices to sort out
if i < self.nslices:
ssorted = np.concatenate(
(sremain, sorted[i, starts[i]:], sover))
sindices = np.concatenate(
(iremain, indices[i, starts[i]:], iover))
else:
ssorted = np.concatenate(
(sremain, sortedLR[starts[i]:nelementsLR], sover))
sindices = np.concatenate(
(iremain, indicesLR[starts[i]:nelementsLR], iover))
# Sort the extended slices
indexesextension.keysort(ssorted, sindices)
# Save the first elements of extended slices in the slice i
if i < self.nslices:
sorted[i] = ssorted[:ss]
indices[i] = sindices[:ss]
# Update caches for this slice
self.update_caches(i, ssorted[:ss])
# Save the remaining values in a separate array
send = len(sover) + len(sremain)
sremain = ssorted[ss:ss + send]
iremain = sindices[ss:ss + send]
else:
# Still some elements remain for the last row
n = len(ssorted)
assert n == nelementsLR
send = 0
sortedLR[:n] = ssorted
indicesLR[:n] = sindices
# Update the caches for last row
sortedlr = sortedLR[:nelementsLR]
bebounds = np.concatenate(
(sortedlr[::self.chunksize], [sortedlr[-1]]))
sortedLR[nelementsLR:nelementsLR + len(bebounds)] = bebounds
self.bebounds = bebounds
# Verify that we have dealt with all the remaining values
assert send == 0
# Compute the overlaps in order to verify that we have achieved
# a complete sort. This has to be executed always (and not only
# in verbose mode!).
self.compute_overlaps(self.tmp, "do_complete_sort()", self.verbose)
if self.verbose:
print(f"time: {clock() - t1:.4f}. clock: {cpuclock() - c1:.4f}")
def swap(self,
what: Literal["chunks", "slices"],
mode: Optional[Literal["start", "stop", "median"]]=None) -> bool:
"""Swap chunks or slices using a certain bounds reference."""
# Thresholds for avoiding continuing the optimization
# thnover = 4 * self.slicesize # minimum number of overlapping
# # elements
thnover = 40
thmult = 0.1 # minimum ratio of multiplicity (a 10%)
thtover = 0.01 # minimum overlaping index for slices (a 1%)
if self.verbose:
t1 = clock()
c1 = cpuclock()
if what == "chunks":
self.swap_chunks(mode)
elif what == "slices":
self.swap_slices(mode)
if mode:
message = f"swap_{what}({mode})"
else:
message = f"swap_{what}"
(nover, mult, tover) = self.compute_overlaps(
self.tmp, message, self.verbose)
rmult = len(mult.nonzero()[0]) / len(mult)
if self.verbose:
print(f"time: {clock() - t1:.4f}. clock: {cpuclock() - c1:.4f}")
# Check that entropy is actually decreasing
if what == "chunks" and self.last_tover > 0 and self.last_nover > 0:
tover_var = (self.last_tover - tover) / self.last_tover
nover_var = (self.last_nover - nover) / self.last_nover
if tover_var < 0.05 and nover_var < 0.05:
# Less than a 5% of improvement is too few
return True
self.last_tover = tover
self.last_nover = nover
# Check if some threshold has met
if nover < thnover:
return True
if rmult < thmult:
return True
# Additional check for the overlap ratio
if 0 <= tover < thtover:
return True
return False
def create_temp(self) -> None:
"""Create some temporary objects for slice sorting purposes."""
# The index will be dirty during the index optimization process
self.dirty = True
# Build the name of the temporary file
fd, self.tmpfilename = tempfile.mkstemp(
".tmp", "pytables-", self.tmp_dir)
# Close the file descriptor so as to avoid leaks
os.close(fd)
# Create the proper PyTables file
self.tmpfile = self._openFile(self.tmpfilename, "w")
self.tmp = tmp = self.tmpfile.root
cs = self.chunksize
ss = self.slicesize
filters = self.filters
# temporary sorted & indices arrays
shape = (0, ss)
atom = Atom.from_dtype(self.dtype)
EArray(tmp, 'sorted', atom, shape,
"Temporary sorted", filters, chunkshape=(1, cs))
EArray(tmp, 'indices', UIntAtom(itemsize=self.indsize), shape,
"Temporary indices", filters, chunkshape=(1, cs))
# temporary bounds
nbounds_inslice = (ss - 1) // cs
shape = (0, nbounds_inslice)
EArray(tmp, 'bounds', atom, shape, "Temp chunk bounds",
filters, chunkshape=(cs, nbounds_inslice))
shape = (0,)
EArray(tmp, 'abounds', atom, shape, "Temp start bounds",
filters, chunkshape=(cs,))
EArray(tmp, 'zbounds', atom, shape, "Temp end bounds",
filters, chunkshape=(cs,))
EArray(tmp, 'mbounds', atom, shape, "Median bounds",
filters, chunkshape=(cs,))
# temporary ranges
EArray(tmp, 'ranges', atom, (0, 2),
"Temporary range values", filters, chunkshape=(cs, 2))
EArray(tmp, 'mranges', atom, (0,),
"Median ranges", filters, chunkshape=(cs,))
# temporary last row (sorted)
shape = (ss + 2 + nbounds_inslice,)
CArray(tmp, 'sortedLR', atom, shape,
"Temp Last Row sorted values + bounds",
filters, chunkshape=(cs,))
# temporary last row (indices)
shape = (ss,)
CArray(tmp, 'indicesLR',
UIntAtom(itemsize=self.indsize),
shape, "Temp Last Row indices",
filters, chunkshape=(cs,))
def create_temp2(self) -> None:
"""Create some temporary objects for slice sorting purposes."""
# The algorithms for doing the swap can be optimized so that
# one should be necessary to create temporaries for keeping just
# the contents of a single superblock.
# F. Alted 2007-01-03
cs = self.chunksize
ss = self.slicesize
filters = self.filters
# temporary sorted & indices arrays
shape = (self.nslices, ss)
atom = Atom.from_dtype(self.dtype)
tmp = self.tmp
CArray(tmp, 'sorted2', atom, shape,
"Temporary sorted 2", filters, chunkshape=(1, cs))
CArray(tmp, 'indices2', UIntAtom(itemsize=self.indsize), shape,
"Temporary indices 2", filters, chunkshape=(1, cs))
# temporary bounds
nbounds_inslice = (ss - 1) // cs
shape = (self.nslices, nbounds_inslice)
CArray(tmp, 'bounds2', atom, shape, "Temp chunk bounds 2",
filters, chunkshape=(cs, nbounds_inslice))
shape = (self.nchunks,)
CArray(tmp, 'abounds2', atom, shape, "Temp start bounds 2",
filters, chunkshape=(cs,))
CArray(tmp, 'zbounds2', atom, shape, "Temp end bounds 2",
filters, chunkshape=(cs,))
CArray(tmp, 'mbounds2', atom, shape, "Median bounds 2",
filters, chunkshape=(cs,))
# temporary ranges
CArray(tmp, 'ranges2', atom, (self.nslices, 2),
"Temporary range values 2", filters, chunkshape=(cs, 2))
CArray(tmp, 'mranges2', atom, (self.nslices,),
"Median ranges 2", filters, chunkshape=(cs,))
def cleanup_temp(self) -> None:
"""Copy the data and delete the temporaries for sorting purposes."""
if self.verbose:
print("Copying temporary data...")
# tmp -> index
reduction = self.reduction
cs = self.chunksize // reduction
ncs = self.nchunkslice
tmp = self.tmp
for i in range(self.nslices):
# Copy sorted & indices slices
sorted = tmp.sorted[i][::reduction].copy()
self.sorted.append(sorted.reshape(1, sorted.size))
# Compute ranges
self.ranges.append([[sorted[0], sorted[-1]]])
# Compute chunk bounds
self.bounds.append([sorted[cs::cs]])
# Compute start, stop & median bounds and ranges
self.abounds.append(sorted[0::cs])
self.zbounds.append(sorted[cs - 1::cs])
smedian = sorted[cs // 2::cs]
self.mbounds.append(smedian)
self.mranges.append([smedian[ncs // 2]])
del sorted, smedian # delete references
# Now that sorted is gone, we can copy the indices
indices = tmp.indices[i]
self.indices.append(indices.reshape(1, indices.size))
# Now it is the last row turn (if needed)
if self.nelementsSLR > 0:
# First, the sorted values
sortedLR = self.sortedLR
indicesLR = self.indicesLR
nelementsLR = self.nelementsILR
sortedlr = tmp.sortedLR[:nelementsLR][::reduction].copy()
nelementsSLR = len(sortedlr)
sortedLR[:nelementsSLR] = sortedlr
# Now, the bounds
self.bebounds = np.concatenate((sortedlr[::cs], [sortedlr[-1]]))
offset2 = len(self.bebounds)
sortedLR[nelementsSLR:nelementsSLR + offset2] = self.bebounds
# Finally, the indices
indicesLR[:] = tmp.indicesLR[:]
# Update the number of (reduced) sorted elements
self.nelementsSLR = nelementsSLR
# The number of elements will be saved as an attribute
self.sortedLR.attrs.nelements = self.nelementsSLR
self.indicesLR.attrs.nelements = self.nelementsILR
if self.verbose:
print("Deleting temporaries...")
self.tmp = None
self.tmpfile.close()
Path(self.tmpfilename).unlink()
self.tmpfilename = None
# The optimization process has finished, and the index is ok now
self.dirty = False
# ...but the memory data cache is dirty now
self.dirtycache = True
def get_neworder(self,
neworder: np.ndarray,
src_disk: "Array",
tmp_disk: "Array",
lastrow: LastRowArray,
nslices: int,
offset: int,
dtype: npt.DTypeLike) -> None:
"""Get sorted & indices values in new order."""
cs = self.chunksize
ncs = ncs2 = self.nchunkslice
self_nslices = self.nslices
tmp = np.empty(shape=self.slicesize, dtype=dtype)
for i in range(nslices):
ns = offset + i
if ns == self_nslices:
# The number of complete chunks in the last row
ncs2 = self.nelementsILR // cs
# Get slices in new order
for j in range(ncs2):
idx = neworder[i * ncs + j]
ins = idx // ncs
inc = (idx - ins * ncs) * cs
ins += offset
nc = j * cs
if ins == self_nslices:
tmp[nc:nc + cs] = lastrow[inc:inc + cs]
else:
tmp[nc:nc + cs] = src_disk[ins, inc:inc + cs]
if ns == self_nslices:
# The number of complete chunks in the last row
lastrow[:ncs2 * cs] = tmp[:ncs2 * cs]
# The elements in the last chunk of the last row will
# participate in the global reordering later on, during
# the phase of sorting of *two* slices at a time
# (including the last row slice, see
# self.reorder_slices()). The caches for last row will
# be updated in self.reorder_slices() too.
# F. Altet 2008-08-25
else:
tmp_disk[ns] = tmp
def swap_chunks(self, mode: Literal["start", "stop", "median"]="median") -> None:
"""Swap & reorder the different chunks in a block."""
boundsnames = {
'start': 'abounds', 'stop': 'zbounds', 'median': 'mbounds'}
tmp = self.tmp
sorted = tmp.sorted
indices = tmp.indices
tmp_sorted = tmp.sorted2
tmp_indices = tmp.indices2
sortedLR = tmp.sortedLR
indicesLR = tmp.indicesLR
cs = self.chunksize
ncs = self.nchunkslice
nsb = self.nslicesblock
ncb = ncs * nsb
ncb2 = ncb
boundsobj = tmp._f_get_child(boundsnames[mode])
can_cross_bbounds = (self.indsize == 8 and self.nelementsILR > 0)
for nblock in range(self.nblocks):
# Protection for last block having less chunks than ncb
remainingchunks = self.nchunks - nblock * ncb
if remainingchunks < ncb:
ncb2 = remainingchunks
if ncb2 <= 1:
# if only zero or one chunks remains we are done
break
nslices = ncb2 // ncs
bounds = boundsobj[nblock * ncb:nblock * ncb + ncb2]
# Do this only if lastrow elements can cross block boundaries
if (nblock == self.nblocks - 1 and # last block
can_cross_bbounds):
nslices += 1
ul = self.nelementsILR // cs
bounds = np.concatenate((bounds, self.bebounds[:ul]))
sbounds_idx = bounds.argsort(kind=defsort)
offset = int(nblock * nsb)
# Swap sorted and indices following the new order
self.get_neworder(sbounds_idx, sorted, tmp_sorted, sortedLR,
nslices, offset, self.dtype)
self.get_neworder(sbounds_idx, indices, tmp_indices, indicesLR,
nslices, offset, 'u%d' % self.indsize)
# Reorder completely the index at slice level
self.reorder_slices(tmp=True)
def read_slice(self, where: "Array", nslice: int, buffer: np.ndarray, start: int=0) -> None:
"""Read a slice from the `where` dataset and put it in `buffer`."""
# Create the buffers for specifying the coordinates
self.startl = np.array([nslice, start], np.uint64)
self.stopl = np.array([nslice + 1, start + buffer.size], np.uint64)
self.stepl = np.ones(shape=2, dtype=np.uint64)
where._g_read_slice(self.startl, self.stopl, self.stepl, buffer)
def write_slice(self, where: "Array", nslice: int, buffer: np.ndarray, start: int=0) -> None:
"""Write a `slice` to the `where` dataset with the `buffer` data."""
self.startl = np.array([nslice, start], np.uint64)
self.stopl = np.array([nslice + 1, start + buffer.size], np.uint64)
self.stepl = np.ones(shape=2, dtype=np.uint64)
countl = self.stopl - self.startl # (1, self.slicesize)
where._g_write_slice(self.startl, self.stepl, countl, buffer)
# Read version for LastRow
def read_slice_lr(self, where: "Array", buffer: np.ndarray, start: int=0) -> None:
"""Read a slice from the `where` dataset and put it in `buffer`."""
startl = np.array([start], dtype=np.uint64)
stopl = np.array([start + buffer.size], dtype=np.uint64)
stepl = np.array([1], dtype=np.uint64)
where._g_read_slice(startl, stopl, stepl, buffer)
# Write version for LastRow
def write_sliceLR(self, where: "Array", buffer: np.ndarray, start: int=0) -> None:
"""Write a slice from the `where` dataset with the `buffer` data."""
startl = np.array([start], dtype=np.uint64)
countl = np.array([start + buffer.size], dtype=np.uint64)
stepl = np.array([1], dtype=np.uint64)
where._g_write_slice(startl, stepl, countl, buffer)
def reorder_slice(self,
nslice: int,
sorted: "Array",
indices: "Array",
ssorted: np.ndarray,
sindices: np.ndarray,
tmp_sorted: "Array",
tmp_indices: "Array") -> None:
"""Copy & reorder the slice in source to final destination."""
ss = self.slicesize
# Load the second part in buffers
self.read_slice(tmp_sorted, nslice, ssorted[ss:])
self.read_slice(tmp_indices, nslice, sindices[ss:])
indexesextension.keysort(ssorted, sindices)
# Write the first part of the buffers to the regular leaves
self.write_slice(sorted, nslice - 1, ssorted[:ss])
self.write_slice(indices, nslice - 1, sindices[:ss])
# Update caches
self.update_caches(nslice - 1, ssorted[:ss])
# Shift the slice in the end to the beginning
ssorted[:ss] = ssorted[ss:]
sindices[:ss] = sindices[ss:]
def update_caches(self, nslice: int, ssorted: np.ndarray) -> None:
"""Update the caches for faster lookups."""
cs = self.chunksize
ncs = self.nchunkslice
tmp = self.tmp
# update first & second cache bounds (ranges & bounds)
tmp.ranges[nslice] = ssorted[[0, -1]]
tmp.bounds[nslice] = ssorted[cs::cs]
# update start & stop bounds
tmp.abounds[nslice * ncs:(nslice + 1) * ncs] = ssorted[0::cs]
tmp.zbounds[nslice * ncs:(nslice + 1) * ncs] = ssorted[cs - 1::cs]
# update median bounds
smedian = ssorted[cs // 2::cs]
tmp.mbounds[nslice * ncs:(nslice + 1) * ncs] = smedian
tmp.mranges[nslice] = smedian[ncs // 2]
def reorder_slices(self, tmp) -> None:
"""Reorder completely the index at slice level.
This method has to maintain the locality of elements in the
ambit of ``blocks``, i.e. an element of a ``block`` cannot be
sent to another ``block`` during this reordering. This is
*critical* for ``light`` indexes to be able to use this.
This version of reorder_slices is optimized in that *two*
complete slices are taken at a time (including the last row
slice) so as to sort them. Then, each new slice that is read is
put at the end of this two-slice buffer, while the previous one
is moved to the beginning of the buffer. This is in order to
better reduce the entropy of the regular part (i.e. all except
the last row) of the index.
A secondary effect of this is that it takes at least *twice* of
memory than a previous version of reorder_slices() that only
reorders on a slice-by-slice basis. However, as this is more
efficient than the old version, one can configure the slicesize
to be smaller, so the memory consumption is barely similar.
"""
tmp = self.tmp
sorted = tmp.sorted
indices = tmp.indices
if tmp:
tmp_sorted = tmp.sorted2
tmp_indices = tmp.indices2
else:
tmp_sorted = tmp.sorted
tmp_indices = tmp.indices
cs = self.chunksize
ss = self.slicesize
nsb = self.blocksize // self.slicesize
nslices = self.nslices
nblocks = self.nblocks
nelementsLR = self.nelementsILR
# Create the buffer for reordering 2 slices at a time
ssorted = np.empty(shape=ss * 2, dtype=self.dtype)
sindices = np.empty(shape=ss * 2, dtype=np.dtype('u%d' % self.indsize))
if self.indsize == 8:
# Bootstrap the process for reordering
# Read the first slice in buffers
self.read_slice(tmp_sorted, 0, ssorted[:ss])
self.read_slice(tmp_indices, 0, sindices[:ss])
nslice = 0 # Just in case the loop behind executes nothing
# Loop over the remaining slices in block
for nslice in range(1, sorted.nrows):
self.reorder_slice(nslice, sorted, indices,
ssorted, sindices,
tmp_sorted, tmp_indices)
# End the process (enrolling the lastrow if necessary)
if nelementsLR > 0:
sortedLR = self.tmp.sortedLR
indicesLR = self.tmp.indicesLR
# Shrink the ssorted and sindices arrays to the minimum
ssorted2 = ssorted[:ss + nelementsLR]
sortedlr = ssorted2[ss:]
sindices2 = sindices[:ss + nelementsLR]
indiceslr = sindices2[ss:]
# Read the last row info in the second part of the buffer
self.read_slice_lr(sortedLR, sortedlr)
self.read_slice_lr(indicesLR, indiceslr)
indexesextension.keysort(ssorted2, sindices2)
# Write the second part of the buffers to the lastrow indices
self.write_sliceLR(sortedLR, sortedlr)
self.write_sliceLR(indicesLR, indiceslr)
# Update the caches for last row
bebounds = np.concatenate((sortedlr[::cs], [sortedlr[-1]]))
sortedLR[nelementsLR:nelementsLR + len(bebounds)] = bebounds
self.bebounds = bebounds
# Write the first part of the buffers to the regular leaves
self.write_slice(sorted, nslice, ssorted[:ss])
self.write_slice(indices, nslice, sindices[:ss])
# Update caches for this slice
self.update_caches(nslice, ssorted[:ss])
else:
# Iterate over each block. No data should cross block
# boundaries to avoid addressing problems with short indices.
for nb in range(nblocks):
# Bootstrap the process for reordering
# Read the first slice in buffers
nrow = nb * nsb
self.read_slice(tmp_sorted, nrow, ssorted[:ss])
self.read_slice(tmp_indices, nrow, sindices[:ss])
# Loop over the remaining slices in block
lrb = nrow + nsb
if lrb > nslices:
lrb = nslices
nslice = nrow # Just in case the loop behind executes nothing
for nslice in range(nrow + 1, lrb):
self.reorder_slice(nslice, sorted, indices,
ssorted, sindices,
tmp_sorted, tmp_indices)
# Write the first part of the buffers to the regular leaves
self.write_slice(sorted, nslice, ssorted[:ss])
self.write_slice(indices, nslice, sindices[:ss])
# Update caches for this slice
self.update_caches(nslice, ssorted[:ss])
def swap_slices(self, mode: Literal["start", "stop", "median"]="median") -> None:
"""Swap slices in a superblock."""
tmp = self.tmp
sorted = tmp.sorted
indices = tmp.indices
tmp_sorted = tmp.sorted2
tmp_indices = tmp.indices2
ncs = self.nchunkslice
nss = self.superblocksize // self.slicesize
nss2 = nss
for sblock in range(self.nsuperblocks):
# Protection for last superblock having less slices than nss
remainingslices = self.nslices - sblock * nss
if remainingslices < nss:
nss2 = remainingslices
if nss2 <= 1:
break
if mode == "start":
ranges = tmp.ranges[sblock * nss:sblock * nss + nss2, 0]
elif mode == "stop":
ranges = tmp.ranges[sblock * nss:sblock * nss + nss2, 1]
elif mode == "median":
ranges = tmp.mranges[sblock * nss:sblock * nss + nss2]
sranges_idx = ranges.argsort(kind=defsort)
# Don't swap the superblock at all if one doesn't need to
ndiff = (sranges_idx != np.arange(nss2)).sum() / 2
if ndiff * 50 < nss2:
# The number of slices to rearrange is less than 2.5%,
# so skip the reordering of this superblock
# (too expensive for such a little improvement)
if self.verbose:
print("skipping reordering of superblock ->", sblock)
continue
ns = sblock * nss2
# Swap sorted and indices slices following the new order
for i in range(nss2):
idx = sranges_idx[i]
# Swap sorted & indices slices
oi = ns + i
oidx = ns + idx
tmp_sorted[oi] = sorted[oidx]
tmp_indices[oi] = indices[oidx]
# Swap start, stop & median ranges
tmp.ranges2[oi] = tmp.ranges[oidx]
tmp.mranges2[oi] = tmp.mranges[oidx]
# Swap chunk bounds
tmp.bounds2[oi] = tmp.bounds[oidx]
# Swap start, stop & median bounds
j = oi * ncs
jn = (oi + 1) * ncs
xj = oidx * ncs
xjn = (oidx + 1) * ncs
tmp.abounds2[j:jn] = tmp.abounds[xj:xjn]
tmp.zbounds2[j:jn] = tmp.zbounds[xj:xjn]
tmp.mbounds2[j:jn] = tmp.mbounds[xj:xjn]
# tmp -> originals
for i in range(nss2):
# Copy sorted & indices slices
oi = ns + i
sorted[oi] = tmp_sorted[oi]
indices[oi] = tmp_indices[oi]
# Copy start, stop & median ranges
tmp.ranges[oi] = tmp.ranges2[oi]
tmp.mranges[oi] = tmp.mranges2[oi]
# Copy chunk bounds
tmp.bounds[oi] = tmp.bounds2[oi]
# Copy start, stop & median bounds
j = oi * ncs
jn = (oi + 1) * ncs
tmp.abounds[j:jn] = tmp.abounds2[j:jn]
tmp.zbounds[j:jn] = tmp.zbounds2[j:jn]
tmp.mbounds[j:jn] = tmp.mbounds2[j:jn]
def search_item_lt(self,
where: "RootGroup",
item: float,
nslice: int,
limits: tuple[float, float],
start: int=0) -> int:
"""Search a single item in a specific sorted slice."""
# This method will only work under the assumption that item
# *is to be found* in the nslice.
assert nan_aware_lt(limits[0], item) and nan_aware_le(item, limits[1])
cs = self.chunksize
ss = self.slicesize
nelementsLR = self.nelementsILR
bstart = start // cs
# Find the chunk
if nslice < self.nslices:
nchunk = bisect_left(where.bounds[nslice], item, bstart)
else:
# We need to subtract 1 chunk here because bebounds
# has a leading value
nchunk = bisect_left(self.bebounds, item, bstart) - 1
assert nchunk >= 0
# Find the element in chunk
pos = nchunk * cs
if nslice < self.nslices:
pos += bisect_left(where.sorted[nslice, pos:pos + cs], item)
assert pos <= ss
else:
end = pos + cs
if end > nelementsLR:
end = nelementsLR
pos += bisect_left(self.sortedLR[pos:end], item)
assert pos <= nelementsLR
assert pos > 0
return pos
def compute_overlaps_finegrain(self,
where: "RootGroup",
message: str,
verbose: bool) -> tuple[int, np.ndarray, float]:
"""Compute some statistics about overlaping of slices in index.
Returns
-------
noverlaps : int
The total number of elements that overlaps in index.
multiplicity : array of int
The number of times that a concrete slice overlaps with any other.
toverlap : float
An ovelap index: the sum of the values in segment slices that
overlaps divided by the entire range of values. This index is only
computed for numerical types.
"""
ss = self.slicesize
ranges = where.ranges[:]
sorted = where.sorted
sortedLR = where.sortedLR
nslices = self.nslices
nelementsLR = self.nelementsILR
if nelementsLR > 0:
# Add the ranges corresponding to the last row
rangeslr = np.array([self.bebounds[0], self.bebounds[-1]])
ranges = np.concatenate((ranges, [rangeslr]))
nslices += 1
soverlap = 0
toverlap = -1
multiplicity = np.zeros(shape=nslices, dtype="int_")
overlaps = multiplicity.copy()
starts = multiplicity.copy()
for i in range(nslices):
prev_end = ranges[i, 1]
for j in range(i + 1, nslices):
stj = starts[j]
assert stj <= ss
if stj == ss:
# This slice has already been counted
continue
if j < self.nslices:
next_beg = sorted[j, stj]
else:
next_beg = sortedLR[stj]
next_end = ranges[j, 1]
if prev_end > next_end:
# Complete overlapping case
multiplicity[j - i] += 1
if j < self.nslices:
overlaps[i] += ss - stj
starts[j] = ss # a sentinel
else:
overlaps[i] += nelementsLR - stj
starts[j] = nelementsLR # a sentinel
elif prev_end > next_beg:
multiplicity[j - i] += 1
idx = self.search_item_lt(
where, prev_end, j, ranges[j], stj)
nelem = idx - stj
overlaps[i] += nelem
starts[j] = idx
if self.type != "string":
# Convert ranges into floats in order to allow
# doing operations with them without overflows
soverlap += float(ranges[i, 1]) - float(ranges[j, 0])
# Return the overlap as the ratio between overlaps and entire range
if self.type != "string":
erange = float(ranges[-1, 1]) - float(ranges[0, 0])
# Check that there is an effective range of values
# Beware, erange can be negative in situations where
# the values are suffering overflow. This can happen
# specially on big signed integer values (on overflows,
# the end value will become negative!).
# Also, there is no way to compute overlap ratios for
# non-numerical types. So, be careful and always check
# that toverlap has a positive value (it must have been
# initialized to -1. before) before using it.
# F. Alted 2007-01-19
if erange > 0:
toverlap = soverlap / erange
if verbose and message != "init":
print("toverlap (%s):" % message, toverlap)
print("multiplicity:\n", multiplicity, multiplicity.sum())
print("overlaps:\n", overlaps, overlaps.sum())
noverlaps = overlaps.sum()
# For full indexes, set the 'is_csi' flag
if self.indsize == 8 and self._v_file._iswritable():
self._v_attrs.is_csi = (noverlaps == 0)
# Save the number of overlaps for future references
self.noverlaps = noverlaps
return (noverlaps, multiplicity, toverlap)
def compute_overlaps(self,
where: "RootGroup",
message: str,
verbose: bool) -> tuple[int, np.ndarray, float]:
"""Compute some statistics about overlaping of slices in index.
Returns
-------
noverlaps : int
The total number of slices that overlaps in index.
multiplicity : array of int
The number of times that a concrete slice overlaps with any other.
toverlap : float
An ovelap index: the sum of the values in segment slices that
overlaps divided by the entire range of values. This index is only
computed for numerical types.
"""
ranges = where.ranges[:]
nslices = self.nslices
if self.nelementsILR > 0:
# Add the ranges corresponding to the last row
rangeslr = np.array([self.bebounds[0], self.bebounds[-1]])
ranges = np.concatenate((ranges, [rangeslr]))
nslices += 1
noverlaps = 0
soverlap = 0
toverlap = -1
multiplicity = np.zeros(shape=nslices, dtype="int_")
for i in range(nslices):
for j in range(i + 1, nslices):
if ranges[i, 1] > ranges[j, 0]:
noverlaps += 1
multiplicity[j - i] += 1
if self.type != "string":
# Convert ranges into floats in order to allow
# doing operations with them without overflows
soverlap += float(ranges[i, 1]) - float(ranges[j, 0])
# Return the overlap as the ratio between overlaps and entire range
if self.type != "string":
erange = float(ranges[-1, 1]) - float(ranges[0, 0])
# Check that there is an effective range of values
# Beware, erange can be negative in situations where
# the values are suffering overflow. This can happen
# specially on big signed integer values (on overflows,
# the end value will become negative!).
# Also, there is no way to compute overlap ratios for
# non-numerical types. So, be careful and always check
# that toverlap has a positive value (it must have been
# initialized to -1. before) before using it.
# F. Altet 2007-01-19
if erange > 0:
toverlap = soverlap / erange
if verbose:
print("overlaps (%s):" % message, noverlaps, toverlap)
print(multiplicity)
# For full indexes, set the 'is_csi' flag
if self.indsize == 8 and self._v_file._iswritable():
self._v_attrs.is_csi = (noverlaps == 0)
# Save the number of overlaps for future references
self.noverlaps = noverlaps
return (noverlaps, multiplicity, toverlap)
def read_sorted_indices(self,
what: Literal["indices", "sorted"],
start: Optional[int],
stop: Optional[int],
step: Optional[int]) -> np.ndarray:
"""Return the sorted or indices values in the specified range."""
(start, stop, step) = self._process_range(start, stop, step)
if start >= stop:
return np.empty(0, self.dtype)
# Correction for negative values of step (reverse indices)
if step < 0:
tmp = start
start = self.nelements - stop
stop = self.nelements - tmp
if what == "sorted":
values = self.sorted
valuesLR = self.sortedLR
buffer_ = np.empty(stop - start, dtype=self.dtype)
else:
values = self.indices
valuesLR = self.indicesLR
buffer_ = np.empty(stop - start, dtype="u%d" % self.indsize)
ss = self.slicesize
nrow_start = start // ss
istart = start % ss
nrow_stop = stop // ss
tlen = stop - start
bstart = 0
ilen = 0
for nrow in range(nrow_start, nrow_stop + 1):
blen = ss - istart
if ilen + blen > tlen:
blen = tlen - ilen
if blen <= 0:
break
if nrow < self.nslices:
self.read_slice(
values, nrow, buffer_[bstart:bstart + blen], istart)
else:
self.read_slice_lr(
valuesLR, buffer_[bstart:bstart + blen], istart)
istart = 0
bstart += blen
ilen += blen
return buffer_[::step]
[docs]
def read_sorted(self,
start: Optional[int]=None,
stop: Optional[int]=None,
step: Optional[int]=None) -> np.ndarray:
"""Return the sorted values of index in the specified range.
The meaning of the start, stop and step arguments is the same as in
:meth:`Table.read_sorted`.
"""
return self.read_sorted_indices('sorted', start, stop, step)
[docs]
def read_indices(self,
start: Optional[int]=None,
stop: Optional[int]=None,
step: Optional[int]=None) -> np.ndarray:
"""Return the indices values of index in the specified range.
The meaning of the start, stop and step arguments is the same as in
:meth:`Table.read_sorted`.
"""
return self.read_sorted_indices('indices', start, stop, step)
def _process_range(self,
start: Optional[int],
stop: Optional[int],
step: Optional[int]) -> tuple[int, int, int]:
"""Get a range specific for the index usage."""
if start is not None and stop is None:
# Special case for the behaviour of PyTables iterators
stop = idx2long(start + 1)
if start is None:
start = 0
else:
start = idx2long(start)
if stop is None:
stop = idx2long(self.nelements)
else:
stop = idx2long(stop)
if step is None:
step = 1
else:
step = idx2long(step)
return (start, stop, step)
[docs]
def __getitem__(self, key: Union[int, slice]) -> Union[int, np.ndarray]:
"""Return the indices values of index in the specified range.
If key argument is an integer, the corresponding index is returned. If
key is a slice, the range of indices determined by it is returned. A
negative value of step in slice is supported, meaning that the results
will be returned in reverse order.
This method is equivalent to :meth:`Index.read_indices`.
"""
if is_idx(key):
key = operator.index(key)
if key < 0:
# To support negative values
key += self.nelements
return self.read_indices(key, key + 1, 1)[0]
elif isinstance(key, slice):
return self.read_indices(key.start, key.stop, key.step)
def __len__(self) -> int:
return self.nelements
def restorecache(self) -> None:
"""Clean the limits cache and resize starts and lengths arrays"""
params = self._v_file.params
# The sorted IndexArray is absolutely required to be in memory
# at the same time as the Index instance, so create a strong
# reference to it. We are not introducing leaks because the
# strong reference will disappear when this Index instance is
# to be closed.
self._sorted = self.sorted
self._sorted.boundscache = ObjectCache(params['BOUNDS_MAX_SLOTS'],
params['BOUNDS_MAX_SIZE'],
'non-opt types bounds')
self.sorted.boundscache = ObjectCache(params['BOUNDS_MAX_SLOTS'],
params['BOUNDS_MAX_SIZE'],
'non-opt types bounds')
"""A cache for the bounds (2nd hash) data. Only used for
non-optimized types searches."""
self.limboundscache = ObjectCache(params['LIMBOUNDS_MAX_SLOTS'],
params['LIMBOUNDS_MAX_SIZE'],
'bounding limits')
"""A cache for bounding limits."""
self.sortedLRcache = ObjectCache(params['SORTEDLR_MAX_SLOTS'],
params['SORTEDLR_MAX_SIZE'],
'last row chunks')
"""A cache for the last row chunks. Only used for searches in
the last row, and mainly useful for small indexes."""
self.starts = np.empty(shape=self.nrows, dtype=np.int32)
self.lengths = np.empty(shape=self.nrows, dtype=np.int32)
self.sorted._init_sorted_slice(self)
self.dirtycache = False
def search(self, item: tuple[float, float]) -> int:
"""Do a binary search in this index for an item."""
if profile:
tref = clock()
if profile:
show_stats("Entering search", tref)
if self.dirtycache:
self.restorecache()
# An empty item or if left limit is larger than the right one
# means that the number of records is always going to be empty,
# so we avoid further computation (including looking up the
# limits cache).
if not item or item[0] > item[1]:
self.starts[:] = 0
self.lengths[:] = 0
return 0
tlen = 0
# Check whether the item tuple is in the limits cache or not
nslot = self.limboundscache.getslot(item)
if nslot >= 0:
startlengths = self.limboundscache.getitem(nslot)
# Reset the lengths array (not necessary for starts)
self.lengths[:] = 0
# Now, set the interesting rows
for nrow2, start, length in startlengths:
self.starts[nrow2] = start
self.lengths[nrow2] = length
tlen = tlen + length
return tlen
# The item is not in cache. Do the real lookup.
sorted = self.sorted
if self.nslices > 0:
if self.type in self.opt_search_types:
# The next are optimizations. However, they hide the
# CPU functions consumptions from python profiles.
# You may want to de-activate them during profiling.
if self.type == "int32":
tlen = sorted._search_bin_na_i(*item)
elif self.type == "int64":
tlen = sorted._search_bin_na_ll(*item)
elif self.type == "float16":
tlen = sorted._search_bin_na_e(*item)
elif self.type == "float32":
tlen = sorted._search_bin_na_f(*item)
elif self.type == "float64":
tlen = sorted._search_bin_na_d(*item)
elif self.type == "float96":
tlen = sorted._search_bin_na_g(*item)
elif self.type == "float128":
tlen = sorted._search_bin_na_g(*item)
elif self.type == "uint32":
tlen = sorted._search_bin_na_ui(*item)
elif self.type == "uint64":
tlen = sorted._search_bin_na_ull(*item)
elif self.type == "int8":
tlen = sorted._search_bin_na_b(*item)
elif self.type == "int16":
tlen = sorted._search_bin_na_s(*item)
elif self.type == "uint8":
tlen = sorted._search_bin_na_ub(*item)
elif self.type == "uint16":
tlen = sorted._search_bin_na_us(*item)
else:
assert False, "This can't happen!"
else:
tlen = self.search_scalar(item, sorted)
# Get possible remaining values in last row
if self.nelementsSLR > 0:
# Look for more indexes in the last row
(start, stop) = self.search_last_row(item)
self.starts[-1] = start
self.lengths[-1] = stop - start
tlen += stop - start
if self.limboundscache.couldenablecache():
# Get a startlengths tuple and save it in cache.
# This is quite slow, but it is a good way to compress
# the bounds info. Moreover, the .couldenablecache()
# is doing a good work so as to avoid computing this
# when it is not necessary to do it.
startlengths = []
for nrow, length in enumerate(self.lengths):
if length > 0:
startlengths.append((nrow, self.starts[nrow], length))
# Compute the size of the recarray (aproximately)
# The +1 at the end is important to avoid 0 lengths
# (remember, the object headers take some space)
size = len(startlengths) * 8 * 2 + 1
# Put this startlengths list in cache
self.limboundscache.setitem(item, startlengths, size)
if profile:
show_stats("Exiting search", tref)
return tlen
# This is a scalar version of search. It works with strings as well.
def search_scalar(self,
item: tuple[Union[float, int], Union[float, int]],
sorted: IndexArray) -> int:
"""Do a binary search in this index for an item."""
tlen = 0
# Do the lookup for values fulfilling the conditions
for i in range(self.nslices):
(start, stop) = sorted._search_bin(i, item)
self.starts[i] = start
self.lengths[i] = stop - start
tlen += stop - start
return tlen
def search_last_row(self, item: tuple[float, float]) -> tuple[int, int]:
# Variable initialization
item1, item2 = item
bebounds = self.bebounds
b0, b1 = bebounds[0], bebounds[-1]
bounds = bebounds[1:-1]
itemsize = self.dtype.itemsize
sortedLRcache = self.sortedLRcache
hi = self.nelementsSLR # maximum number of elements
rchunksize = self.chunksize // self.reduction
nchunk = -1
# Lookup for item1
if nan_aware_gt(item1, b0):
if nan_aware_le(item1, b1):
# Search the appropriate chunk in bounds cache
nchunk = bisect_left(bounds, item1)
# Lookup for this chunk in cache
nslot = sortedLRcache.getslot(nchunk)
if nslot >= 0:
chunk = sortedLRcache.getitem(nslot)
else:
begin = rchunksize * nchunk
end = rchunksize * (nchunk + 1)
if end > hi:
end = hi
# Read the chunk from disk
chunk = self.sortedLR._read_sorted_slice(
self.sorted, begin, end)
# Put it in cache. It's important to *copy*
# the buffer, as it is reused in future reads!
sortedLRcache.setitem(nchunk, chunk.copy(),
(end - begin) * itemsize)
start = bisect_left(chunk, item1)
start += rchunksize * nchunk
else:
start = hi
else:
start = 0
# Lookup for item2
if nan_aware_ge(item2, b0):
if nan_aware_lt(item2, b1):
# Search the appropriate chunk in bounds cache
nchunk2 = bisect_right(bounds, item2)
if nchunk2 != nchunk:
# Lookup for this chunk in cache
nslot = sortedLRcache.getslot(nchunk2)
if nslot >= 0:
chunk = sortedLRcache.getitem(nslot)
else:
begin = rchunksize * nchunk2
end = rchunksize * (nchunk2 + 1)
if end > hi:
end = hi
# Read the chunk from disk
chunk = self.sortedLR._read_sorted_slice(
self.sorted, begin, end)
# Put it in cache. It's important to *copy*
# the buffer, as it is reused in future reads!
# See bug #60 in xot.carabos.com
sortedLRcache.setitem(nchunk2, chunk.copy(),
(end - begin) * itemsize)
stop = bisect_right(chunk, item2)
stop += rchunksize * nchunk2
else:
stop = hi
else:
stop = 0
return (start, stop)
def get_chunkmap(self) -> np.ndarray:
"""Compute a map with the interesting chunks in index."""
if profile:
tref = clock()
if profile:
show_stats("Entering get_chunkmap", tref)
ss = self.slicesize
nsb = self.nslicesblock
nslices = self.nslices
lbucket = self.lbucket
indsize = self.indsize
bucketsinblock = self.blocksize / lbucket
nchunks = math.ceil(self.nelements / lbucket)
chunkmap = np.zeros(shape=nchunks, dtype="bool")
reduction = self.reduction
starts = (self.starts - 1) * reduction + 1
stops = (self.starts + self.lengths) * reduction
starts[starts < 0] = 0 # All negative values set to zero
indices = self.indices
for nslice in range(self.nrows):
start = starts[nslice]
stop = stops[nslice]
if stop > start:
idx = np.empty(shape=stop - start, dtype='u%d' % indsize)
if nslice < nslices:
indices._read_index_slice(nslice, start, stop, idx)
else:
self.indicesLR._read_index_slice(start, stop, idx)
if indsize == 8:
idx //= np.asarray(lbucket).astype(idx.dtype)
elif indsize == 2:
# The chunkmap size cannot be never larger than 'int_'
idx = idx.astype("int_")
offset = int((nslice // nsb) * bucketsinblock)
idx += offset
elif indsize == 1:
# The chunkmap size cannot be never larger than 'int_'
idx = idx.astype("int_")
offset = (nslice * ss) // lbucket
idx += offset
chunkmap[idx] = True
# The case lbucket < nrowsinchunk should only happen in tests
nrowsinchunk = self.nrowsinchunk
if lbucket != nrowsinchunk:
# Map the 'coarse grain' chunkmap into the 'true' chunkmap
nelements = self.nelements
tnchunks = math.ceil(nelements / nrowsinchunk)
tchunkmap = np.zeros(shape=tnchunks, dtype="bool")
ratio = lbucket / nrowsinchunk
idx = chunkmap.nonzero()[0]
starts = (idx * ratio).astype('int_')
stops = np.ceil((idx + 1) * ratio).astype('int_')
for start, stop in zip(starts, stops):
tchunkmap[start:stop] = True
chunkmap = tchunkmap
if profile:
show_stats("Exiting get_chunkmap", tref)
return chunkmap
def get_lookup_range(self,
ops: Union[tuple[str], tuple[str, str]],
limits: Union[tuple[float], tuple[float, float]]) -> tuple[float, float]:
assert len(ops) in [1, 2]
assert len(limits) in [1, 2]
assert len(ops) == len(limits)
column = self.column
coldtype = column.dtype.base
itemsize = coldtype.itemsize
if len(limits) == 1:
assert ops[0] in ['lt', 'le', 'eq', 'ge', 'gt']
limit = limits[0]
op = ops[0]
if op == 'lt':
range_ = (inftype(coldtype, itemsize, sign=-1),
nextafter(limit, -1, coldtype, itemsize))
elif op == 'le':
range_ = (inftype(coldtype, itemsize, sign=-1),
limit)
elif op == 'gt':
range_ = (nextafter(limit, +1, coldtype, itemsize),
inftype(coldtype, itemsize, sign=+1))
elif op == 'ge':
range_ = (limit,
inftype(coldtype, itemsize, sign=+1))
elif op == 'eq':
range_ = (limit, limit)
elif len(limits) == 2:
assert ops[0] in ('gt', 'ge') and ops[1] in ('lt', 'le')
lower, upper = limits
if lower > upper:
# ``a <[=] x <[=] b`` is always false if ``a > b``.
return ()
if ops == ('gt', 'lt'): # lower < col < upper
range_ = (nextafter(lower, +1, coldtype, itemsize),
nextafter(upper, -1, coldtype, itemsize))
elif ops == ('ge', 'lt'): # lower <= col < upper
range_ = (lower, nextafter(upper, -1, coldtype, itemsize))
elif ops == ('gt', 'le'): # lower < col <= upper
range_ = (nextafter(lower, +1, coldtype, itemsize), upper)
elif ops == ('ge', 'le'): # lower <= col <= upper
range_ = (lower, upper)
return range_
def _f_remove(self, recursive: bool=False) -> None:
"""Remove this Index object."""
# Index removal is always recursive,
# no matter what `recursive` says.
super()._f_remove(True)
def __str__(self) -> str:
"""This provides a more compact representation than __repr__"""
# The filters
filters = []
if self.filters.complevel:
if self.filters.shuffle:
filters.append('shuffle')
if self.filters.bitshuffle:
filters.append('bitshuffle')
filters.append(f'{self.filters.complib}({self.filters.complevel})')
return (f"Index({self.optlevel}, "
f"{self.kind}{', '.join(filters)}).is_csi={self.is_csi}")
def __repr__(self) -> str:
"""This provides more metainfo than standard __repr__"""
cpathname = f"{self.table._v_pathname}.cols.{self.column.pathname}"
retstr = f"""{self._v_pathname} (Index for column {cpathname})
optlevel := {self.optlevel}
kind := {self.kind}
filters := {self.filters}
is_csi := {self.is_csi}
nelements := {self.nelements}
chunksize := {self.chunksize}
slicesize := {self.slicesize}
blocksize := {self.blocksize}
superblocksize := {self.superblocksize}
dirty := {self.dirty}
byteorder := {self.byteorder!r}
sorted := {self.sorted}
indices := {self.indices}
ranges := {self.ranges}
bounds := {self.bounds}
sortedLR := {self.sortedLR}
indicesLR := {self.indicesLR}"""
return retstr
class IndexesDescG(NotLoggedMixin, Group):
_c_classid = 'DINDEX'
def _g_width_warning(self) -> None:
warnings.warn(
"the number of indexed columns on a single description group "
"is exceeding the recommended maximum (%d); "
"be ready to see PyTables asking for *lots* of memory "
"and possibly slow I/O" % self._v_max_group_width,
PerformanceWarning)
class IndexesTableG(NotLoggedMixin, Group):
_c_classid = 'TINDEX'
@property
def auto(self) -> bool:
if 'AUTO_INDEX' not in self._v_attrs:
return default_auto_index
return self._v_attrs.AUTO_INDEX
@auto.setter
def auto(self, auto: bool) -> None:
self._v_attrs.AUTO_INDEX = bool(auto)
@auto.deleter
def auto(self) -> None:
del self._v_attrs.AUTO_INDEX
def _g_width_warning(self) -> None:
warnings.warn(
"the number of indexed columns on a single table "
"is exceeding the recommended maximum (%d); "
"be ready to see PyTables asking for *lots* of memory "
"and possibly slow I/O" % self._v_max_group_width,
PerformanceWarning)
def _g_check_name(self, name: str) -> None:
if not name.startswith('_i_'):
raise ValueError(
"names of index groups must start with ``_i_``: %s" % name)
@property
def table(self) -> "Table":
"""Accessor for the `Table` object of this `IndexesTableG`
container."""
names = self._v_pathname.split("/")
tablename = names.pop()[3:] # "_i_" is at the beginning
parentpathname = "/".join(names)
tablepathname = join_path(parentpathname, tablename)
table = self._v_file._get_node(tablepathname)
return table
class OldIndex(NotLoggedMixin, Group):
"""This is meant to hide indexes of PyTables 1.x files."""
_c_classid = 'CINDEX'